
Unical

DEAR

INDICE

INDICE.		2
1. INT	FRODUZIONE	3
1.1.	DATI GENERALI	
1.2.	SCOPO DEL DEGASATORE	4
2. CA	RATTERISTICHE TECNICHE	6
2.1	DATI GENERALI	
2.2	CARATTERISTICHE	
2.3	DATI TECNICI (fig. 4)	7
3. AC	CESSORI	
3.1	MISURA E CONTROLLO LIVELLO	
3.1.1	Indicatore di livello ad azionamento magnetico	
3.2	GRUPPO DI TERMOREGOLAZIONE	
3.2.1	Sistema di alimentazione autoazionato – Gruppo ingresso vapore	
3.2.2	SISTEMA TERMOMETRICO PER VALVOLE TERMOREGOLATRICI AUTOAZIONATE	
3.2.3	VALVOLA TERMOREGOLATRICE A SEDE SEMPLICE, EQUILIBRATA	
3.3	QUADRO COMANDI	
	ntaggio	
4.1	Installazione	
4.2	Collegamenti idraulici	
4.3	Collegamenti elettrici	
	ILIZZO	
5.1	PRIMO AVVIAMENTO	
5.1.1	Utilizzo normale	-
	NUTENZIONE STRAORDINARIA	
	RATTERISTICHE D'ACQUA	
7.1	ACQUA D'ALIMENTAZIONE - VALORI-LIMITI) in ingresso al generatore	19

1. INTRODUZIONE

1.1. DATI GENERALI

E' noto, che per il generatore di vapore trattamento d'acqua ha il significato fondamentale per la garanzia di tutti componenti e non solo per la prottezione della caldaia dalla corrosione e formazione calcare. Il trattamento viene effettuato con aiuto di alcuni fasi indicati in fig.1.

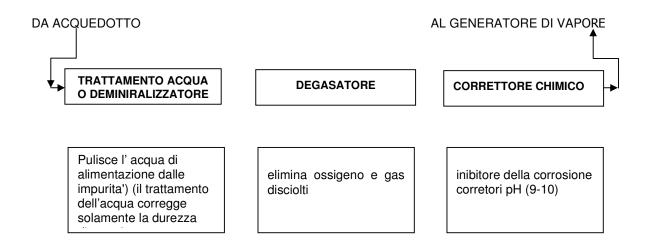


Fig. 1

1.2. SCOPO DEL DEGASATORE

I gas che possono essere disciolti nell'acqua dell'acquedotto sono ossido di carbonio, ossigeno, idrogenosolforato e metano.

Ad esclusione dell'azoto, che a causa dell'inerzia chimica non provoca inconvenienti di questo tipo, la presenza di tutti gli altri gas ell'acqua destinata ad uso industriale, e' da evitare in quanto:

- CO₂ abbassa il pH e rende l'acqua aggressiva per i refrattari e le superfici metalliche;
- O₂ provoca la corrosione delle superfici metalliche con quali l'acqua entra in contatto.

L'eliminazione almeno parziale dei gas puo' essere effettuata attraverso due metodi:

- metodo fisico: riduzione della solubilita' dei gas e loro eliminazione dall'acqua
- metodo chimico: reagenti che si vanno a legare con i gas disciolti in acqua.

La degasazione e' un metodo fisico di eliminazione dei gas dall'acqua, basato sulla correlazione solubilita'-temperatura. In fig. 2 e' diagrammato l'andamento della solubilita' dell'ossigeno nell'acqua in relazione dalla temperatura a diversi valori di pressione assoluta in bar.

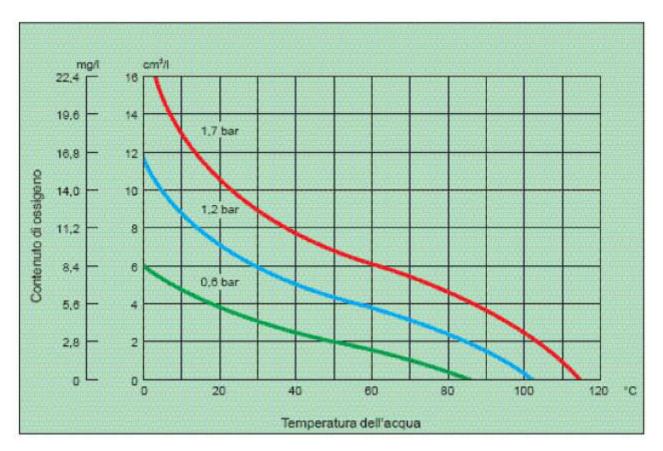


Fig. 2

Secondo la teoria, con la pressione assoluta 1 bar (con la pressione atmosferica) e temperatura 90° C il contenuto dell'ossigeno nell'acqua è minore di 0,2 mg/l che e' ammissibile per il funzionamento regolare del generatore.

Nonostante, sul risultato del valore teorico influiscono seguenti fattori:

- tempo di degasazione d'acqua (piu' tempo passa, piu' completa la degasazione)
- sistema destinato per riscaldamento d'acqua (preferibilmente sistema che crea turbolenza nella massa d'acqua per migliorare la liberazione delle molecole del gas).

Se il degasatore e' atmosferico percio' la temperatura massima dell'acqua può arrivare solamente fino a 90-95C. In questo caso si effettua la degasazione però il degasatore deve avere le dimensioni appropriate e essere accompagnato dalla degasazione chimica come riportato sulla fig.3.

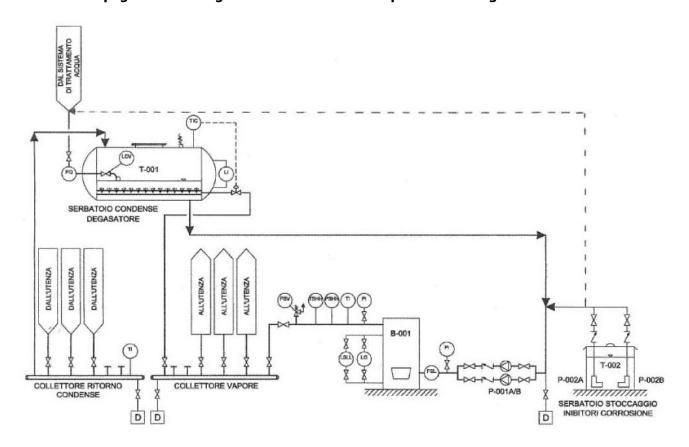


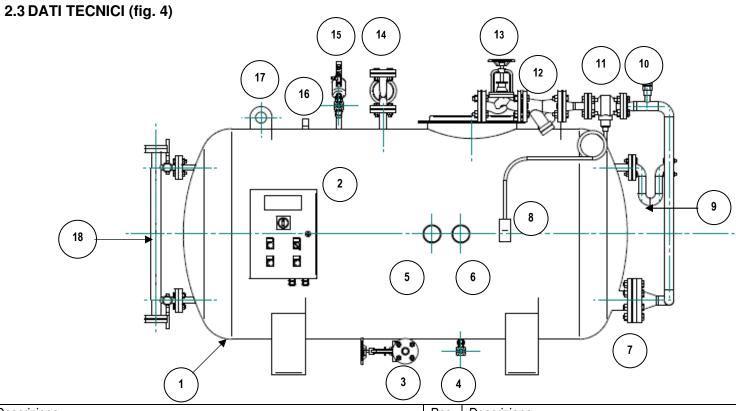
Fig. 3

Nota: i correttori chimici possono essere messi dentro il degasatore, cosi si possono utilizzare non solo nel generatore e nel condotto di vapore, ma anche nello stesso degasatore, evitando l'utilizzo dei serbatoi in acciaio inox, che hanno il costo elevato rispetto al serbatoio in acciaio zincato e che così possono essere utilizzati.

2. CARATTERISTICHE TECNICHE

2.1 DATI GENERALI

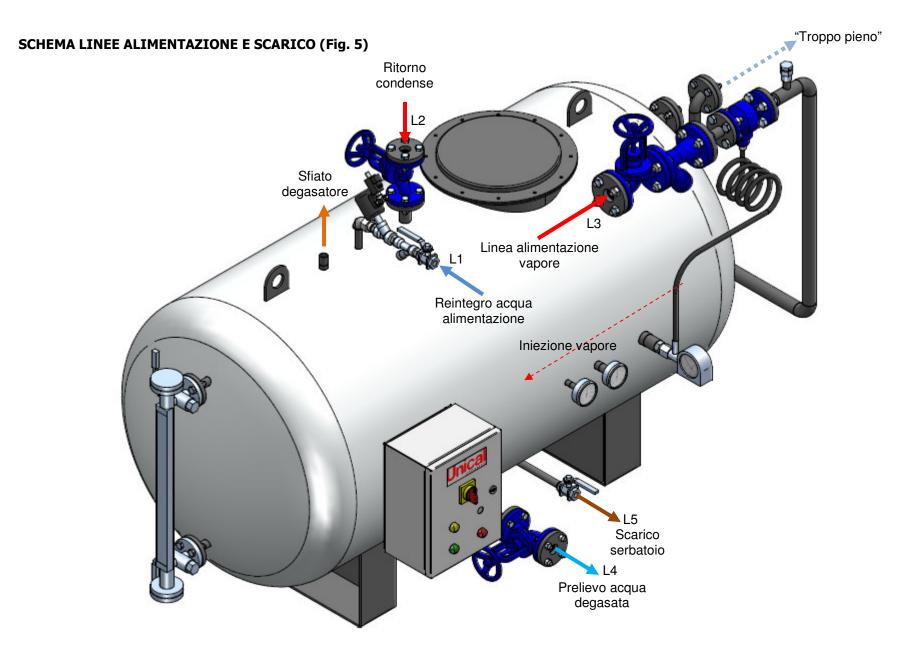
I degasatori della serie DEAR sono degasatori del tipo atmosferico per la degasazione termofisica dell'acqua d'alimentazione dei generatori di vapore. L'apparecchio ricade nei limiti di applicazione dell'art. 4 par. 3 della Direttiva 2014/68/UE PED.


Come illustrato nel diagramma, la degasazione parziale dell'acqua di alimentazione di caldaia avviene per innalzamento della temperatura dell'acqua nel serbatoio mediante iniezione di vapore. La temperatura dell'acqua è controllata e mantenuta mediante il sistema termometrico installato a bordo e questo valore di temperatura, legato al contenuto dei gas disciolti in acqua, deve essere mantenuto dentro i valori limite riportati dal costruttore dei generatori di vapore.

2.2 CARATTERISTICHE

Il degasatore DEAR è composto dai seguenti gruppi:

- gruppo d'alimentazione di vapore asservito ad un sistema termometrico (alimentazione del vapore mediante azionamento di valvola termoregolatrice per alimentazione di vapore all'interno del serbatoio per il mantenimento della temperatura impostata).
- Indicatore di livello magnetico, con 4 contatti bistabili posizionati opportunamente per il controllo ON-OFF del livello d'acqua nel serbatoio e per gli allarmi di basso ed alto livello
- Valvola pneumatica sulla linea ingresso acqua
- Gruppo prelievo acqua degasata
- Sfiato
- Troppo pieno
- Scarico
- Quadro elettrico



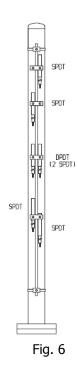
Pos.	Descrizione	Pos.	Descrizione
1	SERBATOIO DEGASATORE	10	VALVOLA ROMPIVUOTO
2	QUADRO COMANDI	11	VALVOLA TERMOREGOLATRICE
3	LINEA PRELIEVO ACQUA DEGASATA	12	FILTRO AD "Y"
4	LINEA SCARICO SERBATOIO	13	VALVOLA A FLUSSO AVVIATO LINEA VAPORE
5	MANOMETRO Ø 80 mm	14	VALVOLA A FLUSSO AVVIATO LINEA RITORNO CONDENSE
6	TERMOMETRO Ø 80 mm	15	VALVOLA PNEUMATICA CONTROLLO INGRESSO ACQUA DI REINTEGRO
7	LINEA INIEZIONE VAPORE	16	SFIATO
8	SISTEMA DI TERMOREGOLAZIONE	17	PUNTO DI SOLLEVAMENTO
9	TUBO DEL "TROPPO PIENO"	18	INDICATORE DI LIVELLO MAGNETICO

Pag. 9 di 19

Modello		DEAR 300	DEAR 500	DEAR 1000	DEAR 1500	DEAR 2000	DEAR 2500	DEAR 3000	DEAR 4000	DEAR 5000	DEAR 8000	DEAR 10000
Capacità totale	lt.	300	500	1000	1500	2000	2500	3000	4000	5000	8000	10000
Capacità a livello normale	lt.	232	325	650	975	1300	1625	1950	2800	3500	5600	7000
Larghezza degasatore accessoriato	mm	1006	1030	1230	1480	1580	1580	1650	1810	1990	2090	2090
Lunghezza degasatore accessoriato	mm	1932	1980	2390	2210	1340	1990	3080	3040	3050	4690	5140
Altezza degasatore accessoriato	mm	1251	1330	1420	1670	1770	1770	1860	2080	2270	2420	2420
Alimentazione acqua	DN/"G.	1/2"	1/2"	1/2"	1/2"	1"	1"	1"	1" 1/2	1" 1/2	1" 1/2	2"
Ingresso vapore	DN/"G.	DN 32	DN 32	DN 32	DN 32	DN 40	DN 40	DN 40	DN 40	DN 50	DN 50	DN 50
Ritorno condense	DN/"G.	DN 25	DN 25	DN 25	DN 25	DN 32	DN 32	DN 40	DN 40	DN 50	DN 65	DN 65
Prelievo acqua	DN/"G.	DN 25	DN 25	DN 25	DN 25	DN 25	DN 32	DN 32	DN 40	DN 50	DN 65	DN 65
Scarico	DN/"G.	1"	1"	1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2	1" 1/2	2"	2"	2"
Sfiato	DN/"G.	1/2"	1/2"	1/2"	3/4"	3/4"	3/4"	1"	1"	1 1/2"	1 1/2"	2"
Troppo pieno	DN/"G.	DN 25	DN 25	DN 25	DN 25	DN 32	DN 50	DN 50				
Diametro boccaporto	mm	Ø 300	Ø 300	Ø 400	Ø 400	Ø 400	Ø 500	Ø 500				
Pressione massima alim. vapore	bar	16	16	16	16	16	16	16	16	16	16	16
Pressione di alim. aria compressa	bar	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8	6 - 8
Peso degasatore (a vuoto)	kg	255	350	480	535	580	685	785	970	1080	1650	1760
Peso degasatore (in esercizio)	kg	487	675	1130	1510	1880	2310	2735	3770	4580	7250	8760

^{*} Dati con recupero condense = 50%

D 40 1140


3. ACCESSORI

I degasatori della serie DEAR sono dotati di tutti la strumentazione e gli accessori atti ad assicurare il corretto funzionamento dell'apparecchio, come di seguito elencato:

- Strumentazione di misura (termometro, manometro);
- Accessori misura e controllo livello (indicatore di livello ad azionamento magnetico)
- Gruppo di termoregolazione
- Gruppo di alimentazione
- Gruppo di scarico
- Gruppo di prelievo acqua degasata
- · Troppo pieno
- Sfiato
- · Quadro comandi

3.1 MISURA E CONTROLLO LIVELLO

3.1.1 Indicatore di livello ad azionamento magnetico

3.1.1.1 LOGICA DI CONTROLLO DEL LIVELLO

Poiché parte del vapore prodotto viene persa durante l'utilizzo, il ritorno condense è minore del 100%; il delta condense perse deve essere reintegrato con acqua proveniente dalla rete.

Se si ipotizza che ad esempio il 50% del vapore prodotto torna sotto forma di condensa al serbatoio degasatore, il restante 50% deve essere fornito come acqua dalla rete.

Il controllo del livello nel serbatoio avviene tramite l'indicatore di livello ad azionamento magnetico installato a bordo per la visualizzazione in campo ed appunto il controllo del livello del liquido all'interno del serbatoio del degasatore.

Il controllo del livello è possibile mediante n. 4 contatti elettrici bistabili posizionati ai punti di soglia dell'indicatore che comandano, tramite il quadro comandi l'apertura/chiusura della valvola pneumatica ON-OFF installata sulla linea di reintegro acqua di rete.

I quatto punti di soglia sono i seguenti:

#	Punto di soglia	Descrizione	Azione			
1	1 LWL SAFE Sicurezza minimo livello acqua		segnale di allarme su quadro comandi			
2	LWL	minimo livello acqua operativo	segnale di apertura linea ingresso acqua			
3	HWL	massimo livello acqua operativo	segnale di chiusura linea ingresso acqua			
4	HWL SAFE	sicurezza massimo livello acqua	segnale di allarme su quadro comandi			

Il delta (quota C) tra LWL ed HWL è di norma pari a 50 mm. Il livello normale dell'acqua nel serbatoio (posizionato tra LWL ed HWL) è posto a circa 4/6 del diametro del serbatoio.

Schematicamente (Fig. 7):

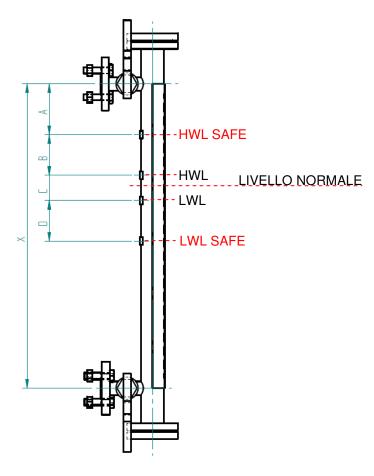


Fig. 7

3.2 GRUPPO DI TERMOREGOLAZIONE

Il mantenimento della temperatura dell'acqua si effettua con ausilio dell'alimentazione controllata del vapore.

Il gruppo di preriscaldo dell'acqua mediante il vapore è costituito da:

- 1. valvola di intercettazione a globo;
- 2. filtro ad Y;
- 3. valvola termoregolatrice ad azione diretta (valvola autoazionata) a due vie;
- 4. sistema termometrico di regolazione per valvola autoazionata con elemento sensibile a dilatazione di liquido immerso in apposito pozzetto e regolazione con quadrante sul sensore;
- 5. valvola rompi vuoto;
- 6. Iniettore/i vapore.

3.2.1 Sistema di alimentazione autoazionato – Gruppo ingresso vapore

E' il sistema dell'azione diretta, che significa che la valvola termoregolatrice 3 installata sulla linea di alimentazione del vapore, si chiude automaticamente con l'aumento della temperatura.

Quando il valore di temperatura rilevato dall'elemento sensibile del sistema termometrico scende sotto il valore impostato sul quadrante del sensore, il segnale viene trasmesso alla valvola attraverso il capillare.

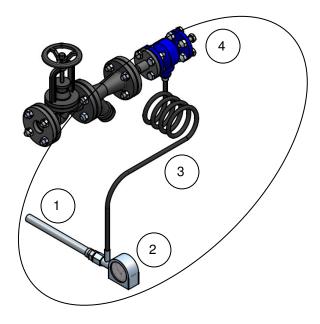


Fig. 8

#	Descrizione
1	Elemento sensibile
2	Comando di regolazione (Attuatore valvola)
3	Capillare
4	Valvola termoregolatrice servoazionata

3.2.2 SISTEMA TERMOMETRICO PER VALVOLE TERMOREGOLATRICI AUTOAZIONATE

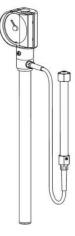


Fig. 9

3.2.2.1 Taratura del sistema termometrico

Per quanto riguarda la taratura del sistema termometrico fare riferimento alla fig. 10.

L'elemento sensibile viene tarato in fabbrica al valore superiore del campo della temperatura e deve essere regolato sull'impianto nella posizione intermedia (1).

Per effettuare la regolazione secondo il valore necessario, inserire il cacciavite nel comando di regolazione (7), dopo aver smontato il tappo antimanomissione (6), che si trova sulla testata dell'indicatore. Girando in senso orario il valore della temperatura diminuisce; in senso antiorario aumenta.

Dopo la messa in servizio dell'impianto confrontare il valore di regolazione impostato con quello letto sul termometro. La differenza tra i valori può essere di qualche grado (in funzione del tipo d'installazione effettuata).

Se si desidera far coincidere i valori si deve procedere come seque:

- 1. smontare il coperchio trasparente frontale (2) della testa dell'indicatore e ruotare manualmente l'indice (3) fino alla corrispondenza con il valore di temperatura misurato;
- 2. rimontare il coperchio trasparente (2)
- 3. impostare di nuovo la temperatura di regolazione al valore desiderato;
- 4. riposizionare il tappo antimanomissione.

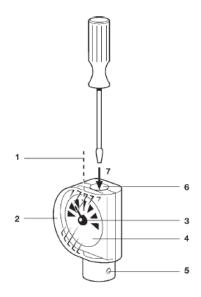


Fig. 10 – Taratura del sistema termometrico

3.2.3 VALVOLA TERMOREGOLATRICE A SEDE SEMPLICE, EQUILIBRATA

La valvola termoregolatrice è impiegata in sistemi di controllo della temperatura ad azione diretta e chiude al salire della temperatura. E' accoppiata al sistema termometrico di regolazione.

La valvola è del tipo a sede semplice, garanzia di ottima tenuta, ed è dotata di soffietto di equilibratura. Questa caratteristica ne consente l'impiego con pressioni differenziali più elevate, a parità di diametro del seggio, rispetto alla normale valvola non equilibrata.

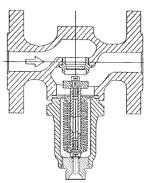
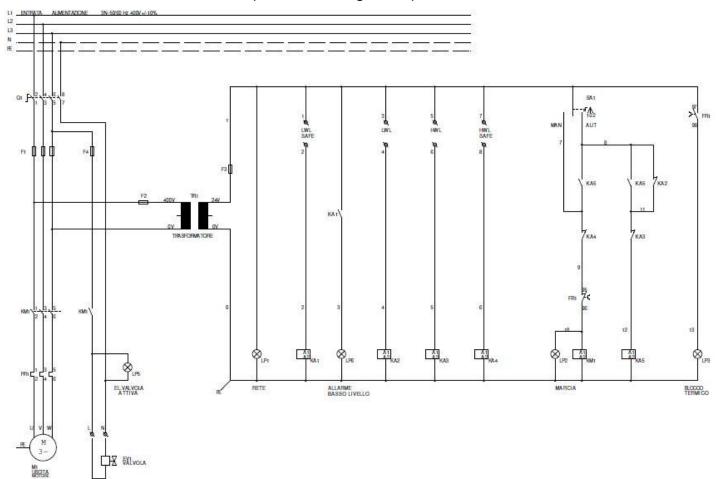


Fig. 11 – Valvola termoregolatrice a sede semplice equilibrata


L'apertura della valvola si effettua con ausilio del sistema termometrico per azionare la valvola termoregolatrice (Fig. 11) e composta da un elemento sensibile alla temperatura (1), meccanismo attuatore della valvola (2), meccanismo indicatore della taratura del valore impostato (4) e capillare (3) che collega l'elemento sensibile con l'attuatore.

3.3 QUADRO COMANDI

SCHEMA ELETTRICO QUADRO COMANDI (fornito con il degasatore)

4. Montaggio

4.1 Installazione

Il generatore viene alimentato mediante le pompe installate a bordo.

La bocca di aspirazione della pompa deve essere mantenuta a battente positivo (sotto la pressione di una colonna d'acqua) creato dalla differenza di livelli tra il serbatoio e la pompa.

Considerando quanto detto prima e in base alle caratteristiche della pompa, in funzione della temperatura dell'acqua bisogna erogare l'acqua con una pressione determinata. La pressione necessaria (l;altezza su quale viene installato il serbatoio) cambia secondo la temperatura d'acqua di alimentazione come da tabella allegata.

TEMPERATURA ACQUA DI ALIMENTAZIONE	PREVALENZA IN ASPIRAZIONE DELLA POMPA		
[℃]	[m]		
60	1		
70	2		
80	3		
90	4,5		

Come si vede, poiché la temperatura d'acqua nel degasatore e' di 90 gradi, il degasatore deve essere posto ad una altezza di 3,5-4 metri rispetto all'asse delle pompe di alimentazione del generatore di vapore.

4.2 Collegamenti idraulici

Una volta installato il degasatore viene collegato secondo i punti seguenti (vd. fig. 5):

Acqua

Dalla raccolta di acqua pulita all' aspirazione della valvola pneumatica (L1), e dal degasatore alla aspirazione della pompa d'alimentazione di generatore di vapore (L4)

Condensa

Dal condotto di ritorno della condensa o del serbatoio di raccolta della condensa (se esiste) al degasatore (L2)

Vapore

Dal generatore di vapore (o dal collettore di distribuzione) alla linea di alimentazione vapore del degasatore (L3)

Scarico

Dal rubinetto di scarico del degasatore (L5) e dal troppo pieno alla rete di scarico

Sfiato

Convogliamento all'esterno dello sfiato del degasatore

4.3 Collegamenti elettrici

Il degasatore e' dotato di quadro (grado di protezione IP 55) e completo con tutti gli accessori. Collegare il degasatore con la linea di terra.

Schema elettrico

Vedere schema fornito con il degasatore.

5. UTILIZZO

5.1 PRIMO AVVIAMENTO

Controllare che siano chiusi tutti i collegamenti.

Controllare che il condotto d'acqua d'alimentazione sia pulito, prevedendo il lavaggio periodico con lo scarico alla fogna prima del caricamento finale.

Aprire il rubinetto sulla linea di alimentazione (L1) dell'ingresso acqua di rete

Riempire il serbatoio controllando che l'erogazione d'acqua si sia arrestata dopo aver raggiunto il livello, controllando mediante lettura dell' indicatore di livello.

Posizionare l'interruttore della valvola alimentazione acqua di rete nella posizione MAN fin che viene raggiunto il livello di lavoro (ALIMENTAZIONE AUTOMATICA DISINSERITA).

Una volta effettuato il riempimento, posizionare l'interruttore su 0, aprire tutti i collegamenti e posizionare su AUT.

5.1.1 Utilizzo normale

Durante l'avviamento della caldaia fredda controllare che il degasatore si sia riempito fino al livello d'esercizio

5.1.1.1 CONTROLLI ORDINARI

Controllare l'efficienza dei dispositivi di controllo e regolazione, controllando con attenzione le parti elettriche (compreso le giunzioni) e le parti meccaniche.

- -Controllare il serraggio delle viti delle flange e lo stato dei guarnizioni;
- effettuare il regolare controllo dei componenti, seguendo le istruzioni relative ai vari componenti, contenute nella busta documenti dell'apparecchio;
- controllare la qualità dell'acqua secondo quanto prescritto nel manuale del generatore facendo anche riferimento al punto 7.

6. MANUTENZIONE STRAORDINARIA

Per effettuare la sostituzione dei componenti in caso di guasto, seguire scrupolosamente le istruzioni relative ai vari componenti, contenute nella busta documenti dell'apparecchio.

7. CARATTERISTICHE D'ACQUA

7.1 ACQUA D'ALIMENTAZIONE - VALORI-LIMITI) in ingresso al generatore

Nella tabella sono riportati i valori-limiti ammissibili per generatori di vapore Unical

Tab. 1

Parametro	Unità di misura	Pressione ≤ 15 bar	Pressione ≤ 25 bar		
pH		7 ÷ 9,5	7 ÷ 9,5		
Durezza totale	mg/I CaCO ₃	10 (2)	5		
ossigeno (1)	mg/I O ₂	0,1	0,05		
Anidride Carbonica libera (1)	mg/I CO ₂	0,2	0,2		
Ferro	mg/l Fe	0,1	0,1		
Rame	mg/I CU	0,1	0,1		
Sostanze oleose	mg/l	1	1		
Segni esterni	Chiara, trasparente, senza la schiuma persistente				

- 1. I dati riportati sono considerabili presupponendo la presenza di un degasatore termico. Se il degasatore e' assente in ogni caso è necessario far salire la temperatura nel serbatoio come minimo a 80 gradi, per diminuire il contenuto dei gas disciolti (02 e CO2). Bisogna anche utilizzare additivi chimici per eliminare completamente l'ossigeno e diminuire O2 che provoca la corrosione.
- 2. Prescrizioni per generatori con piastre tubiere piane saldate d'angolo (generatori Unical del tipo ad inversione di fiamma).

Per i generatori per i quale si utilizza la delibera prevista dall' art 43 D.M. 215.74 e si applica la regola E.2.E.3 dalla raccolta E, ed anche per i generatori con piastre tubiere e fondo diritto, saldate d'angolo e non risbordate (piastre arrotondate), secondo il cap. 1R dalla raccolta VSG e circolare n. verbale 47351 dal 1.12.77, il valore della durezza totale non deve superare 5.

Pag. 19 di 19

www.unical.eu